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As a simple example to check the phases, where, e.g., three
scattering matrices are combined (double-plane step, waveguide
section of length ¢, double-plane step), Figs. 1 and 2 present the
scattering coefficients of the resonant irises with finite thickness ¢
already shown in our paper but now including the phases. The
measured results are found to be in excellent agreement with the
values theoretically predicted by our program using the theory
presented in our paper [1].

Apart from the above information on the facts, let us add the
following comment: In principle, we agree that criticism can be a
fruitful force to advance scientific knowledge. But, in this in-
stance, the criticism has obviously been based on a failure of
sound research and an unfamiliarity with the related literature.
Maybe the information given above will finally help the commen-
tator to reproduce the results that we have extracted three [1] or
seven [6] years ago and have utilized successfully since then.
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Clarification to “Direct Method of Obtaining
Capacitance From Finite-Element Matrices”

ROBERT KAIRES anDp JEFFREY BEREN, MEMBER, IEEE

Abstract —In the letter by Daly and Helps [1], they suggest that energy
can be minimized on an element-by-element basis. The functional, how-
ever, must be treated globally because energy minimization has meaning
only over the whole system. This discussion follows Daly and Helps’
reasoning, but on a global basis, and draws different conclusions based on
our work with finite elements.
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The electric potential can be found in any three-dimensional
structure having appropriate boundary conditions by minimizing
the variational energy expression [2]

! E-DdS 1
W—zL-. : (1)

In the finite-element method, the energy in one element can be
written [3]

1 1
(€) oo _ 2 g
w 2fsclv¢| ds = -0’8 . (2)

The electric potential ¢ can be expressed as

6= va

1=1

(x’y’z)

where v, are the unknown nodal potentials and «, are shape
functions. p is a vector (column matrix) of unknown nodal
potential values and $© is a square matrix having values

(e) — .
Sy —fsva, va,ds.

The total energy can be summed from the elemental contribu-
tions

‘_gpp § pf [l/ p]
(3)
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where ¥V, is a column vector of prescribed nodal potentials, and

V,isa column vector of unprescribed nodal potentials. Since §

is symmetric, the following relations hold:

8,y =87 Sy =5} and 5, = 5], @
Minimization of the energy leads to [3]
v
—p
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or
Si¥r=—5,% £b (5b)
Substituting (5a) into (3) yields
1 1 v,
W=5L/T:L/=—2-_V}[:Spp§,,,][l,f] (6)
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By using (4) and the definition of b in (5b), this can be written as
1 5,5
W=E[L/TL/fT] [— ] (7

-b
Let us now assume that we have two conductors; one conductor
has d nodes at potential v, the second conductor is at zero volts.
Therefore, we have

Y, =[VeWy---¥,00---0]".

Equation (7) reduces to
1 S,V
Epp=0
-5 [m] [ i ] ®

where ¥, has dimension d and Vo2 ([VV,---¥,] and b’ 2
— ﬂ'p V.

The primes on § and b indicate that the dimension has been
reduced and will be dropped henceforth, From the zero-row-sum
property of S
= (9
The dimension of ¥y is equal to the number of free unrestrained
nodes, viz -

Spp¥o =S¥ 0-

Zoo=[V0VZ)"'VE>]'

Again, using the fact that the quadratic form is equal to its own

transpose
L/g:S}szOO =—I/O€§p1/0' (10)
By substituting (9) and (10) into (8), we obtain
1 S,V 1 b
=_ =0 _ 1o ryr]| 2
W—z[_oto][ _b}“‘z[_oo_f [—b]
1
w==(v%-¥])b. (11)

CONCLUSION

Three equations useful in calculating the energy, from which
capacitance can be found, can be used. These are (3), (6), and
(11). Equation (11) is the same as that reported in Daly and
Helps’ letter [1] (also eq. (11) in that paper), but which we arrived
at by treating energy on a global basis. It is useful because the b
vector is presumably available in the process of solving (5b).

We have been using (6) to extract energy from our own
finite-element program. The advantage here is that only elements
which border on restrained boundaries need to be considered, the
other contributions being zero. Equation (6) is also more general
than (11), since it is not constrained to two conductors, one at ¥
V and the other at zero volts.

Which of the above equations is most useful depends on how
the global stiffness matrix is solved and the specific geometry of
the problem involved.
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Rephy! by P. Daly?

Kaires and Beren have derived three equations for calculating
the energy stored in an electrostatic structure by various manipu-
lations of the governing variational expression as discretized in
finite-element form. One of these equations originally derived in
1972 by Daly and Helps (reference [1] of their letter) allows the
direct computation of capacitance by a simple matrix operation.

Kaires and Beren’s three equations (presumably equivalent
taking boundary elements into account) would have additional
force if the authors had indicated the area of application of each.
The last line of their conclusions gives no real guidance on this
important question to the reader.

In the abstract, Kaires and Beren state that our energy minimi-
zation is carried out on an element-by-element basis. We concede
that the wording of our original letter might give such an impres-
sion but it is obvious that, in fact, any minimization is and must
be global. This point is reinforced by the fact that Kaires and
Beren themselves reproduce our (11) by minimizing globally!

The authors are incorrect in stating that our equation for
capacitance is constrained to two conductors, one at ¥, volts and
the other at zero volts. In fact, our equation allows any potential
difference ¢ between conductors: this is demonstrated by its
ability to handle [4] odd modes (positive, negative, and zero
potentials) in coupled transmission lines.

Manuscript received March 19, 1985.
2The author is with the Department of Electrical and Electronic Engineering,
University of Leeds, Leeds, LS2 9JT Yorkshire, England.

Correction to “A Continuous Comparison Radiometer
at 97 GHz”

C. READ PREDMORE, MEMBER, IEEE, NEAL R. ERIKSON,
G. RICHARD HUGUENIN, MEMBER, IEEE, AND
PAUL F. GOLDSMITH, MEMBER, IEEE

In the above paper,' the reference to Faris [1] should not imply
that the correlation radiometer was invented by Faris. This class
of radiometers was devised by Dr. Emil Blum and described in
his paper “Sensibilite des radiotelescopes et recepteurs a correla-
tion,” which appeared in Annales D’ Astrophysique, vol. 22, no. 2,
pp. 139-163, Mar.—Apr. 1959. Dr. Blum’s contribution was also
cited in the paper “Radio telescopes,” published in Methods of
Experimental Physics, vol. 12, pt. B, pp. 218-219.

Manuscript received May 14, 1985,

The authors are with the Five college Radio Astronomy Observatory, Uni-
versity of Massachusetts, Amherst, MA 01003.
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